Remote Sensing Metrics to Support Coastal Planning and Operations

Molly Reif, Geographer, GISP (Environmental Laboratory)
Lauren Dunkin, Coastal Engineer (Coastal & Hydraulics Laboratory)
US Army Engineer Research and Development Center
Joint Airborne Lidar Bathymetry Technical Center of Expertise

Coastal Geotools
April 2, 2015
Charleston, SC
Outline

- National Coastal Mapping Program: background and products
- Coastal Engineering Index
- Parameter extraction to support:
 - Defining coastal regions,
 - Modeling critical species, and
 - Modeling landscape change
Goals

- Develop regional, repetitive, high-resolution, high-accuracy elevation and imagery data
- Build an understanding of how the coastal zone is changing
- Facilitate management of sediment and projects at a regional, or watershed scale

Marquette Harbor, MI, Lake Superior, 2011
National Coastal Mapping Progress

Products
- LAS format bathy/topo
- Aerial photos mosaics
- NAVD88 Zero contour
- 1-meter bathy/topo DEM
- 1-meter bathy/topo bare earth DEM
- Hyperspectral image mosaics
- Laser reflectance images
- Basic landcover classification
- Volume change metrics

Number of times surveyed since 2004

- ◯ One Time
- ✚ Two Times
- ✤ Three Times
- ▲ Four Times
- — Five Times
- ★ Six Times

FY15
Bathymetry and topography
Hyperspectral imagery

1 m pixel resolution, 48 spectral bands
375-1050 nm

Olowalu, Maui, HI 2013
Hyperspectral Imagery

Port Susan Bay, WA 2014
NCMP Schedule

CZMIL data coverage

- Tillamook Bay
- Nehalem Bay

2014-
- West Coast (Washington, Oregon, Puget Sound)

FY 2015 –
- Complete the West Coast (CA)
- Gulf
Metrics/Parameters

- **Elevation**
 - Change (elevation/volume)
 - Contour (change)
 - Shoal

- **Dune**
 - Elevation (crest/toe)
 - Continuity
 - Slope
 - Volume

- **Beach**
 - Width
 - Slope

- **Imagery**
 - Hyperspectral and Multi-Spectral Imagery

- **Land characterization**
 - Critical habitat (SAV, wetlands, dune vegetation, invasive/ITES)
 - Impervious surface
 - Landscape diversity

- **R&D/Value added products/tools**
 - Change Detection
 - Landscape change modeling
 - Volume/elevation/shoreline change
 - Structure assessment
 - Sediment Budgets
 - Monitoring Shore Protection
 - Defining Coastal Regions

- **Coastal Engineering Index**
- Coastal Resilience
- Critical Species Detection and Modeling
 - Sea turtle nesting habitat
 - Oysters*
 - Salmonid
 - * ECO-PCX model certification
Indices

Coastal vulnerability index (USGS)

Product mean:
\[CVI_1 = \frac{(x_1 \cdot x_2 \cdot x_3 \cdot \ldots \cdot x_n)}{n} \]

Modified product mean:
\[CVI_2 = \frac{x_1 \cdot x_2 \cdot (x_3 + x_4) \cdot x_5 \cdot \ldots \cdot (x_n + x_2)}{n - 2} \]

Average sum of squares:
\[CVI_3 = \frac{x_1^2 + x_2^2 + x_3^2 + x_4^2 + \ldots + x_n^2}{n} \]

Modified product mean (2):
\[CVI_4 = \frac{x_1 \cdot x_2 \cdot x_3 \cdot x_4 \cdot \ldots \cdot x_n}{5(n-4)} \]

Square root of product mean:
\[CVI_5 = \sqrt{CVI_1} \]

Sum of products:
\[CVI_6 = 4x_1 + 4x_2 + 2(x_3 + x_4) + 4x_5 + 2(x_6 + x_7) \]

State of the Coast (NOAA)
Coastal Engineering Index

| Geomorphology | Dune height
| | Beach width
	Shoreline change
Inlets	Ebb shoal volume change
	Structure dimensions relative to design
	Navigability
Environment	Dune vegetation density
	Wetland density
	Submerged aquatic vegetation density
Human use	Impervious surface density

Parameters provide:

1) variability in scaling to either a region or project-level, and
2) data using remote sensing image and elevation products that do not require ground based sampling
Dunes

- Provide natural buffer from waves/runup to upland areas
- Volume of sediment available for beach recovery
- Included as part of beach nourishment projects

- Dune height – crest of the first dune
- Dune toe – slope change in dune

2010 Dune Height
2 m
Dune Vegetation Density

- Helps stabilize dunes and reduces erosion by trapping sand
- Provide habitat for critical species, including TE species

Dune Vegetation Density Area:
- Low: 0.75 km2
- Medium: 0.28 km2
- High: 0.12 km2

- Extract vegetation within the dune field
Coastal engineering indices

CEI provides comparable combined indices for engineering, environmental, human use, and the inlets that provide a snap shot of coastal conditions.
Defining Coastal Regions

- Dynamic coastal areas can be challenging to define or delineate in a spatial context (boundaries can change often).
- In order to programmatically assess regional changes and find suitable project reference sites, a standard process would better enable utilization of available spatial data to delineate coastal regions.
- This study focused on synthesizing geomorphic and environmental parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Source</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dune Crest</td>
<td>USGS</td>
<td>2011</td>
</tr>
<tr>
<td>Beach Width</td>
<td>shoreline - NOAA; back line - FDEP CCCL</td>
<td>2014</td>
</tr>
<tr>
<td>Land Use Land Cover</td>
<td>USGS</td>
<td>2011</td>
</tr>
<tr>
<td>Ecological Systems</td>
<td>NatureServe</td>
<td>2003</td>
</tr>
</tbody>
</table>
Spatial Parameters

- Geomorphic parameters were divided to reflect regional value ranges:
 - **Dune crest** divided into two categories: low (<2-m) and high (> 2-m) dunes
 - **Beach width** divided into two categories: narrow (< 100-m) and wide (> 100-m); based on regional requirements

<table>
<thead>
<tr>
<th>Dune Crest</th>
<th>Value Range</th>
<th>Value Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td><2-m</td>
<td>C1</td>
</tr>
<tr>
<td>medium</td>
<td>> 2-m</td>
<td>C2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beach Width</th>
<th>Value Range</th>
<th>Value Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>narrow</td>
<td>< 100-m</td>
<td>Wi1</td>
</tr>
<tr>
<td>Medium</td>
<td>>100-m</td>
<td>Wi2</td>
</tr>
</tbody>
</table>

- Environmental parameters were also assigned codes for each unique class type
- When the underlying environmental components were similar, classes were combined into a representative value code
 - Ex: emergent/brackish/tidal wetlands were combined from both USGS and NatureServe datasets for a comprehensive emergent wetland class
Case Study: Southwest FL

- The input data layers were combined to form a hierarchical gradient ranging from broad coastal regions to detailed coastal regions.

Broad coastal regions – 1km bins grouped based on majority land use/cover only, resulting in 7 divisions.

Intermediate coastal regions – 1km bins grouped based on majority land use/cover and average beach width, resulting in 14 divisions.

Detailed coastal regions – 1km bins grouped based on majority land use/cover, average beach width, and dune crest ranges, resulting in 19 divisions.

- Group areas based on easily extractable parameters that are quantifiable.
- Flexible, hierarchical approach allows identification of areas based on broad, regional conditions vs project-relevant conditions providing a range of visualization options.
- Provides quick way to find areas that can be used as reference sites in a coastal context which may be useful for mitigation or design scenarios.
- Flexible nature of parameter partitioning and coding makes it simple to tailor methods to a particular area or management objective (i.e. if trying to manage for a particular coastal objective).
Demonstration of a Sea Turtle Nesting Habitat Model Using Remotely Sensed Data

- 700 miles of coastline designated as critical nesting habitat (CH) for loggerhead sea turtle (*Caretta caretta*) conservation

- The nesting habitat suitability model will:
 - provide an information tool to better evaluate management strategies
 - provide decision-support for USACE operations/planning activities

GOAL: Demonstrate relative suitability of selected sites within the CH zone for *C. caretta* by developing a spatially-explicit ecological model
Spatial Parameter Identification

- Mappable/spatial parameters identified through literature review
 - Morphological
 - Environmental
 - Anthropogenic
 - Habitat
- Parameter list refined based on feedback from subject matter experts
 - important for nesting habitat
 - correlates with the resolution of the spatial datasets
Project Value

- The C. caretta habitat suitability model will provide an information tool to better communicate management priorities, evaluate management strategies, and provide decision-support for USACE operations/planning activities.

- Map of relative suitability based on spatially derived parameters
 - Regional value ranges (transferable to other sites)
Ecological Modeling for Landscape Change Analysis

1) Identify changes to critical habitat using multi-temporal imagery and lidar data

2) Derive landscape metrics associated with landscape patterns

3) Integrate with ecological simulation to develop a better understanding of factors influencing change and a tool to assess project level impacts/benefits

<table>
<thead>
<tr>
<th>Metric</th>
<th>Process</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clumpiness</td>
<td>Biodiversity</td>
<td>↑↓</td>
</tr>
<tr>
<td>Cohesion</td>
<td>Connectivity</td>
<td>↑↓</td>
</tr>
<tr>
<td></td>
<td>historical_lidar</td>
<td>sparse_veg</td>
</tr>
<tr>
<td>----------------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Distance to ocean</td>
<td>O</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Lucas and Carter, 2013 (would need further adjustment); Geider et al 2014; Tissier et al 2013</td>
<td></td>
</tr>
<tr>
<td>Distance to sound</td>
<td>O</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Geider et al 2014</td>
<td></td>
</tr>
<tr>
<td>Distance to dune crest</td>
<td>O</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Geider et al 2014</td>
<td></td>
</tr>
<tr>
<td>Distance to dune toe</td>
<td>O</td>
<td>I</td>
</tr>
<tr>
<td>beach width</td>
<td>O</td>
<td>I</td>
</tr>
<tr>
<td>zero contour to dune toe</td>
<td>O</td>
<td>I</td>
</tr>
<tr>
<td>dune field volume</td>
<td>O</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Preistas and Fagherazzi 2010, implied</td>
<td></td>
</tr>
<tr>
<td>beach slope</td>
<td>O</td>
<td>I</td>
</tr>
<tr>
<td>barrier island width</td>
<td>O</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Claudino-Sales et al 2008; background Houser and Hamilton, 2009; Smith et al 2008</td>
<td></td>
</tr>
<tr>
<td>elevation</td>
<td>O</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Lucas and Carter, 2013; Geider, 2014; Judd et al, 2008; Miller et al, 2010; Sellars and Jolls, 2007 (Amaranthus); Priestas and Fagherazzi, 2010</td>
<td></td>
</tr>
<tr>
<td>slope</td>
<td>O</td>
<td>I</td>
</tr>
<tr>
<td>aspect</td>
<td>O</td>
<td>I</td>
</tr>
<tr>
<td>foredune continuity (?)</td>
<td>O</td>
<td>I</td>
</tr>
<tr>
<td>sparse density</td>
<td>O</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Preistas and Fagherazzi 2010; Miller et al 2010</td>
<td></td>
</tr>
<tr>
<td>herbaceous density</td>
<td>O</td>
<td>I</td>
</tr>
<tr>
<td>woody density</td>
<td>O</td>
<td>I</td>
</tr>
<tr>
<td>groundwater depth</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Hayden et al 1995</td>
<td></td>
</tr>
<tr>
<td>groundwater salinity</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Hayden et al 1995</td>
<td></td>
</tr>
<tr>
<td>Effective surge depth</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Hayden et al 1995</td>
<td></td>
</tr>
<tr>
<td>Surge depth threshold</td>
<td>I</td>
<td>I</td>
</tr>
</tbody>
</table>

Elevation

Value

- High: 665308
- Low: -0.36588

Distance to 0 Contour

Value

- High: 665.093
- Low: 0
Thank You!

www.jalbtcx.org
Molly.k.Reif@usace.army.mil