

Current Situation

- Maturation of numerous environmental models (hydrodynamics, shoreline and geomorphic changes, wetland response to SLRise)
- Rapid evolution drone mapping technology (outpacing policy)
- High fidelity 3D geovisualization tools

Challenges and Questions

- How can environmental modeling, UAS, and geovisualization be integrated and applied to improve risk perception?
- What are the accuracy of UAS (and impediments) to scaling up?
- Can we produce science-based, salient, and feasible future scenarios of green infrastructure and resilient coastal communities?

A Geodesign Approach after Steinetz (2012)

History

Present

Future

Sea Level Rise

- Hampton Roads NOAA Tide Gage nearby Sewells Point
- USACE SLR curve calculator
- Subsidence
- Impacts
 - Flooding
 - Habitat losses/gains
 - Landform and sedimentation changes
 - Land use and navigation changes

NOAA et al. 2017 Relative Sea Level Change Scenarios for : SEWELLS POINT

Year

Modeling Potpourri

- VDATUM for topobathy and vertical datums
- SLOSH, SCHISM, ADCIRC for storm surges
- USGS WAVES Toolbox for wave and bed shear stress
- SLAMM for marsh response and future site suitability

SLR and Tidal Flooding

Years Nuisance Flood Value = 0.53m indicated

→ Historic → Trend/ENSO — Trend (1950 – 2013)

Sources: Sweet and Marra (2016); Larry Atkinson ODU (2019) http://coastalslr.blogspot.com/2019/01/sewells-point-2018.html

SLAMM and Wetland Response

- Background
- Scenario and input data
- SLR scenarios
 - 1m and 1.5 m 2075 w/ and w/o protection
 - Restoration
- Assumptions
 - Salinity, climate, sedimentation

SLAMM 6 Warren Pinnacle Consulting

SLAMM Protection

SLAMM No Protection

Drones in Coastal Mapping

- Digital surface model and elevation mapping and change
- Feature extraction for structures and digitization
 - Buildings
 - Shorelines
 - Dunes and other landforms
 - Vegetation and fine-scale covertypes
 - Historical cultural resources
 - Bird and other species monitoring
 - Rapid damage assessment

Drone Mapping Approach

- Purpose and method
- Local constraints
 - Airspace constraints/FAA
 - Tide
 - Weather
- Commercial off the shelf tech.
- Testbed approach (a small watershed)
 - Data volume
 - Seasonal snapshot

Drone DSM to DEM

- DSM from UAV with Pix4D SfM
- Sampling DEM and DSM
- Adjustment of DSM to NAVD88
- LiDAR RMSE vertical accuracy

= 0.066 m (0.092 m spec.)

FVA of the classified LiDAR

RMSEz x 1.960 = 0.129 m (0.181 m spec.)

- Phantom 4 Pro specs.
 - +/- 0.5m vertical with GPS positioning
 - +/- 0.1m Vision positioning
- Drone Derived DEM
 - Regression R² 0.766 (<0.001)
 - RMSE of Drone DEM 0.0332m
 - 0.065m linear error at 95%
 - Min. SLR increment to model = 13cm
 - Min. Time to model SLR increment = 28.9 yrs

Raw DSM

LiDAR

Drone DEM

Derived Current and Future DEM Contours

- MaxSurge33-SLR (2.44m + 0.67m) = 3.11m
 1933 storm 8/23/33
- MHHW-SLR2050 (0.84m + 0.67m) = 1.51m
- MHW-SLR2050 (0.778m + 0.67m) = 1.448m
- MTL-SLR 2050 (0.408m + 0.67m) =1.078m
- MHHW 0.84m
- MHW 0.778m
- MTL 0.48m

Visualization: Grey-Green Prescriptive Scenarios

Drone Visualization Results

- Set of structural grey infrastructure and natural/nature-based green infrastructure
- 3D models and COLLADA>ArcGIS Pro conversion
- Site selection and placement
- Final visualizations and future dissemination

Modeling Discussion

- Scenario and Modeling Challenges
 - SLRise scenarios continue to have wide uncertainty over time
 - But improving LiDAR and Drone DEMs are allowing more refined flood modeling
 - Hydrocorrection, ditches, nuisance flooding
 - Runoff and subwatershed delineation
 - SLAMM & other wetland spatial models
 - Marsh parameters imported from distant locations
 - Lacking feedbacks between structures, sedimentation, and marshes
 - Hybrid changes (e.g. marsh restoration, or sedimentary restoration)
 - Todays revetments and riprap as tomorrow's oyster reef/sill
 - Rolling or phased retreat approach
 - Apply Life Cycle Assessment (LCA) to NNB?
 - Sedimentation and landform changes highly uncertain
 - Dredging and protective structure stabilization vs. comprehensive planning
 - Coastal circulation and sediment transport under SLR

Drone Discussion

- Drone mapping challenges and discoveries
 - DSM is good quality for ideal surfaces
 - Effort to model structures, adaptations, and visualization (vs. alternatives, e.g., CityEngine, GoogleEarth, or Pictometry)
 - Airspace and other constraints limit portability
- Immediate potential for site analyses or event and long-term monitoring
- Bathymetry is a limiting data factor in the shallow turbid estuary (potential for ASV)

Geodesign Integration Discussion

- Integration and limitations to geodesign
 - More participatory to ensure feasibility and salience
- GIS can assimilate, but bottlenecks and scale & accuracy issues emerge
- Visualizations
 - Ought to be tested
 - Scenario embedded with local planning
 - Perceptions vs. preferences
 - Improve sharing, opendata, and dissemination

Conclusions

- Geodesign poses strong potential to combine hydrodynamic and SLR modeling, flooding and built environment, and green infrastructure planning for resilience
- Modeling and drone mapping remain quite siloed
- Geospatial data still require careful integration (especially vertically)
- 3D models and viz are enhanced by UAV mapping (but logistics and model production and viz remain limiting)
- ASVs could fill some data gaps
- Future research: Landform and marsh evolution, fate of grey infrastructure, and designing with life cycle.