

A Bathymetric Sounding Density Analysis to Inform Ocean Mapping Strategies

Meredith Westington¹, Jesse Varner³, Mike Sutherland³, Andrew Armstrong¹, & Jennifer Jencks²

1 - NOAA, NOS, Office of Coast Survey
 2 - NOAA, NESDIS, National Centers for Environmental Information (NCEI)
 3- Cooperative Institute for Research in Environmental Sciences, University of Colorado and NCEI

February 13, 2019

The Nippon Foundation-GEBCO Seabed 2030

- Scope of Initiative: Map the entire ocean floor
- Target Resolution: 100 meter*
- Target Completion Date: 2030

*May establish varying resolutions as a function of water depth, data density, and quality

Basic U.S. Definition of "Mapped"

- Survey Vintage: 1960 to present
- Data Density Classifications
 - 1 2 measurements per 100 meter cell
 - 3 or more measurements per 100 meter cell

*May establish varying resolutions as a function of water depth, data density, and quality

Principal Layers of Bathymetry

NOAA NCEI/IHO Data Center for Digital Bathymetry

Multibeam Bathymetry

NOS/OCS Hydrography (>1960)

Single-beam Bathymetry (>1960)

Crowdsourced Bathymetry

NOS/OCS Hydrography (BAG-formatted + multibeam)

Extended Continental Shelf Grids

NOAA's Digital Coast

Bathymetric LIDAR

Processing Framework

177 tiles

4 degrees latitudeX6 degrees longitude

Gridding Process

NB-SYSTEM: mbgrid

Raw multibeam, single-beam, crowdsourced bathymetry, and NOS hydrography soundings

100-m resolution sounding density grids

GDAL: gdal_rasterize

NOS hydrography (BAG + multibeam), U.S. extended continental shelf grids, and

bathymetric LIDAR footprints

100-m resolution footprint grids

Grid Merging and Reclassification Rules

AND, not ADD

Reclassed Cells

Sounding density of 1 - 2 = 1Sounding density of 3 or more = 3

Geospatial Web Service

U.S. Waters Mapped with at least 1 sounding

42%
of total
U.S.
waters
are
minimally
mapped

3,438,000 sq nm of EEZ + 154,000 sq nm of coastal waters 3,592,000 sq nm of U.S. waters

U.S. Waters Mapped with 3 or more soundings

35%
of total
U.S.
waters
are
better
mapped

3,438,000 sq nm of EEZ + 154,000 sq nm of coastal waters 3,592,000 sq nm of U.S. waters

Coastal Waters Mapped with at least 1 sounding			
Region	% Minimally Mapped	Area of Minimally Mapped Coastal Waters (sq nm)	Total Area of Coastal Waters (sq nm)
Atlantic and Gulf of Mexico	42%	15,500	36,400
Caribbean	84%	3,700	4,400
Pacific (WA, OR, CA)	65%	5,200	8,000
Alaska	35%	18,800	53,500

80%

81%

100%

44%

4%

32%

TOTAL

Great Lakes

GRAND TOTAL

Hawaiian Islands

CNMI and Guam

American Samoa

2,800

1000

400

47,400

2,000

49,400

3,500

1,200

400

107,400

46,600

154,000

Next Steps for Bathymetry Gap Analysis

- FY19 update to be posted in early December
- Adding a source identifier grid

Ongoing Activities

- Looking to include more openly accessible data holdings
- Exploring the feasibility of an expansion to cover the Meso American - Caribbean Sea Hydrographic Commission (MACHC)
- Evaluating need for a 'full bottom coverage' category

Thank You!

This project would not exist without support from the following people:

Prototype Development and Support:

- Mike Sutherland & Jennifer Jencks at NCEI-Boulder, CO
- Andy Armstrong & Paul Johnson at CCOM/JHC-University of New Hampshire (UNH)

HANK YOU

Data Managers:

- Jason Baillio- NOS Hydrography Manager at NCEI-Boulder, CO
- Brian Meyer- Single-beam Manager at NCEI-Boulder, CO
- Kirk Waters- LiDAR Manager at NOS/OCM-Charleston, SC
- Paul Johnson & Jim Gardner- ECS grid developers at CCOM/JHC-UNH

Web Service and BAG Footprint Developers:

Jesse Varner & John Cartwright at NCEI-Boulder, CO

Questions?

